Computer info

Thursday, November 26, 2009

acer-aspire-5536g-turion-500

AMD Turion X2 dual-core mobile CPU RM-75 (2.20 GHz, 1MB cache, 3600MHz FSB, 35 W)
15.6 inch HD 1366 x 768 pixel resolution, high-brightness (220-nit) Acer CineCrystal
4GB DDR2 RAM; Upgradeable to 4 GB
Windows Vista Home Premium

acer-aspire-5536g-turion

AMD Turion X2 dual-core mobile CPU RM-75 (2.20 GHz, 1MB cache, 3600MHz FSB, 35 W)
15.6 inch HD 1366 x 768 pixel resolution, high-brightness (220-nit) Acer CineCrystal
3GB DDR2 RAM; Upgradeable to 4 GB
Windows Vista Home Premium

acer-aspire-5738pzg-touch-notebook

Touch it to believe it! The Aspire 5738zPG features advanced multi-touch technology for an enriched multimedia experience with fingertip precision. The 15.6" HD display is Windows® 7 compliant with exciting multi-touch capability so you can effortlessly browse, rotate and magnify what you see on screen. Experience faster, more intuitive navigation and feel the difference -- it's a whole lot of fun! The easy-to-use Acer TouchPortal converges your multimedia and provides touch-enhanced access. It includes My Favorites, My Gadgets, My Devices and a handy media player, right at your fingertips. With this kind of convenience, you're more in touch with your media, your web and your life than ever before!
Technical Specification
CPU:
Intel Pentium mobile CPU T4300 (1 MB L2 cache, 2.16 GHz, 800 MHz FSB, 35 W, 45nm Technology)
Screen:
With integrated Multi-Touch Screen supporting Finger Touch - 15.6 inch HD LED-BACKLIT 1366x768
Memory:
2 GB DDR2 RAM upgradable to 4GB
Operating System:
Windows 7 Home Premium
Hard Disk:
320 GB - Serial ATA 5400 rpm
Optical Drive:
8X DVD Super Multi double-layer drive
Wifi:
Wi-Fi Enabled
Bluetooth:
Bluetooth 2.1+EDR (Enhanced Data Rate)
Modem:
56K ITU V.92 modem with PTT approval; Wake-on-Ring ready
USB:
4x USB 2.0 ports
Audio:
Dolby optimized surround sound system with two built-in stereo speakers
Graphics:
ATI Mobility Radeon HD 4570 with 512 MB of dedicated DDR3 VRAM
Carrybag:
Acer-Targus Backpack
Battery:
6 cell Lithium Ion battery
Warranty:
1 Year Limited International Traveller's Warranty
Camera:
Integrated Acer Crystal Eye high-def webcam, featuring 640 x 480 @ 30 fps
Others:
Acer Bio-Protection fingerprint solution, 5-in-1 card reader (SD, MMC, MS, MS PRO, xD), HDMI port
Weight:
2.80 (in kg)

असर अस्पिरे ओने डी २५० linux

Intel Atom processor N270 (1.60 GHz, 533 MHz FSB, 512 KB L2 cache)
10.1 inch SD 1024 x 600 (WSVGA) pixel resolution, Acer CrystalBrite™ LED-backlit TFT LCD
1 GB RAM, 1 SODIMM Slot
Linpus Linux

Monday, October 12, 2009

Laptop

Any kind of new news regarding laptop

Monday, July 27, 2009

Palmtop

A small computer that literally fits in your palm. Compared to full-size computers, palmtops are severely limited, but they are practical for certain functions such as phone books and calendars. Palmtops that use a pen rather than a keyboard for input are often called hand-held computers or PDAs.
Because of their small size, most palmtop computers do not include disk drives. However, many contain PCMCIA slots in which you can insert disk drives, modems, memory, and other devices.
Palmtops are also called PDAs, hand-held computers and pocket computers.

Wednesday, May 20, 2009

Laptop ....?

A laptop (also known as a notebook) is a personal computer designed for mobile use small enough to sit on one's lap. A laptop includes most of the typical components of a desktop computer, including a display, a keyboard, a pointing device (a touchpad, also known as a trackpad, and/or a pointing stick), speakers, as well as a battery, into a single small and light unit. The rechargeable battery required is charged from an AC/DC adapter and typically stores enough energy to run the laptop for two to three hours in its initial state, depending on the configuration and power management of the computer.
Laptops are usually shaped like a large notebook with thicknesses between 0.7–1.5 inches (18–38 mm) and dimensions ranging from 10x8 inches (27x22cm, 13" display) to 15x11 inches (39x28cm, 17" display) and up. Modern laptops weigh 3 to 12 pounds (1.4 to 5.4 kg); older laptops were usually heavier. Most laptops are designed in the flip form factor to protect the screen and the keyboard when closed. Modern 'tablet' laptops have a complex joint between the keyboard housing and the display, permitting the display panel to twist and then lay flat on the keyboard housing. They usually have a touchscreen display and some include handwriting recognition or graphics drawing capability.
Laptops were originally considered to be "a small niche market" and were thought suitable mostly for "specialized field applications" such as "the military, the Internal Revenue Service, accountants and sales representatives". Battery-powered portable computers had just 2% worldwide market share in 1986. But today, there are already more laptops than desktops in businesses, and laptops are becoming obligatory for student use and more popular for general use. In 2008 more laptops than desktops were sold in the US and according to a forecast by the research firm IDC and Intel, the same milestone will be achieved in the worldwide PC market as soon as 2009

Wednesday, April 8, 2009

Information Technology

Information technology (IT), as defined by the Information Technology Association of America (ITAA), is "the study, design, development, implementation, support or management of computer-based information systems, particularly software applications and computer hardware." IT deals with the use of electronic computers and computer software to convert, store, protect, process, transmit, and securely retrieve information.
Today, the term information technology has ballooned to encompass many aspects of computing and technology, and the term has become very recognizable. The information technology umbrella can be quite large, covering many fields. IT professionals perform a variety of duties that range from installing applications to designing complex computer networks and information databases. A few of the duties that IT professionals perform may include data management, networking, engineering computer hardware, database and software design, as well as the management and administration of entire systems.
When computer and communications technologies are combined, the result is information technology, or "infotech". Information Technology (IT) is a general term that describes any technology that helps to produce, manipulate, store, communicate, and/or disseminate information. Presumably, when speaking of Information Technology (IT) as a whole, it is noted that the use of computers and information are associated.
The term Information Technology (IT) is sometimes said to have been coined by Jim Domsic of Michigan in November 1981.[citation needed] Domsic, who worked as a computer manager for an automotive related industry, is supposed to have created the term to modernize the outdated phrase "data processing". The Oxford English Dictionary, however, in defining information technology as "the branch of technology concerned with the dissemination, processing, and storage of information, esp. by means of computers" provides an illustrative quote from the year 1958 (Leavitt & Whisler in Harvard Business Rev. XXXVI. 41/1 "The new technology does not yet have a single established name. We shall call it information technology.") that predates the so-far unsubstantiated Domsic coinage.
In recent years ABET and the ACM have collaborated to form accreditation and curriculum standards for degrees in Information Technology as a distinct field of study separate from both Computer Science and Information Systems. SIGITE is the ACM working group for defining these standards.

Sunday, March 8, 2009

Laptop

A laptop (also known as a notebook) is a personal computer designed for mobile use small enough to sit on one's lap. A laptop includes most of the typical components of a typical deskto computer, including a display, a keyboard, a pointing device (a touchpad, also known as a trackpad, or a pointing stick) as well as a battery, into a single small and light unit. The rechargeable battery required is charged from an AC/DC adapter (ie, a wll wart) and typically stores enough energy to run the laptop for several hours.
Laptops are usually shaped like a large notebook with thicknesses between 0.7–1.5 inches (18–38 mm) and dimensions ranging from 10x8 inches (27x22cm, 13" display) to 15x11 inches (39x28cm, 17" display) and up. Modern laptops weigh 3 to 12 pounds (1.4 to 5.4 kg); older laptops were usually heavier. Most laptops are designed in the flip form factor to protect the screen and the keyboard when closed. Modern 'tablet' laptops have a complex joint between the keyboard housing and the display, permitting the display panel to twist and then lay flat on the keyboard housing. They usually have a touchscreen display and some include handwriting recognition or graphics drawing capability.

Sunday, March 1, 2009

Best deal to find laugh

Hi Friends You can find best deal here
गुरु-समस.ब्लागस्पाट.कॉम

Thursday, February 19, 2009

Samsung p Laptops. samsung laptop


Samsung P Laptops. Samsung Laptop
The stylish dark grey P series is inspired by cutting edge technology that delivers the highest level of mobile computing security. The P Series consists of three very unique notebooks which are designed to meet every personal need and business requirement. Sharing a single technology platform, these have proved to offer each individual business: productivity, flexibility and also are cost efficient This series is best known for having Samsungs renowned Super Bright screens, fast striking download speeds to give you maximum productivity on the move, and not to mention the robust build quality for portable working. Discover the next generation of technology in the Samsung P Series, Experience outstanding performance and quality.

Sunday, February 8, 2009

hi

HI Friends from this link You can Play on line Games just click
GAMES

Wednesday, February 4, 2009

Programmers

Computer programmers are those who write computer software. Their jobs usually involve:

Requirements analysis

Specification

Software architecture

Coding

Compilation

Software testing

Documentation

Integration

Maintenance

Tuesday, February 3, 2009

Programming languages

Different programming languages support different styles of programming (called programming paradigms). The choice of language used is subject to many considerations, such as company policy, suitability to task, availability of third-party packages, or individual preference. Ideally, the programming language best suited for the task at hand will be selected. Trade-offs from this ideal involve finding enough programmers who know the language to build a team, the availability of compilers for that language, and the efficiency with which programs written in a given language execute.

Allen Downey, in his book How To Think Like A Computer Scientist, writes:

The details look different in different languages, but a few basic instructions appear in just about every language: input: Get data from the keyboard, a file, or some other device. output: Display data on the screen or send data to a file or other device. math: Perform basic mathematical operations like addition and multiplication. conditional execution: Check for certain conditions and execute the appropriate sequence of statements. repetition: Perform some action repeatedly, usually with some variation.

Many computer languages provide a mechanism to call functions provided by libraries. Provided the functions in a library follow the appropriate runtime conventions (eg, method of passing arguments), then these functions may be written in any other language

Friday, January 30, 2009

Debugging



A bug which was debugged in 1947.


Debugging is a very important task in the software development process, because an erroneous program can have significant consequences for its users. Some languages are more prone to some kinds of faults because their specification does not require compilers to perform as much checking as other languages. Use of a static analysis tool can help detect some possible problems.
Debugging is often done with IDEs like Visual Studio, NetBeans, and Eclipse. Standalone debuggers like gdb are also used, and these often provide less of a visual environment, usually using a command line.

Measuring language usage

It is very difficult to determine what are the most popular of modern programming languages. Some languages are very popular for particular kinds of applications (e.g., COBOL is still strong in the corporate data center, often on large mainframes, FORTRAN in engineering applications, and C in embedded applications), while some languages are regularly used to write many different kinds of applications.
Methods of measuring language popularity include: counting the number of job advertisements that mention the language, the number of books teaching the language that are sold (this overestimates the importance of newer languages), and estimates of the number of existing lines of code written in the language (this underestimates the number of users of business languages such as COBOL)

Methodologies

The first step in most formal software development projects is requirements analysis, followed by testing to determine value modeling, implementation, and failure elimination (debugging). There exist a lot of differing approaches for each of those tasks. One approach popular for requirements analysis is Use Case analysis.
Popular modeling techniques include Object-Oriented Analysis and Design (OOAD) and Model-Driven Architecture (MDA). The Unified Modeling Language (UML) is a notation used for both OOAD and MDA.
A similar technique used for database design is Entity-Relationship Modeling (ER Modeling).
Implementation techniques include imperative languages (object-oriented or procedural), functional languages, and logic languages.

Algorithmic complexity

The academic field and the engineering practice of computer programming are both largely concerned with discovering and implementing the most efficient algorithms for a given class of problem. For this purpose, algorithms are classified into orders using so-called Big O notation, O(n), which expresses resource use, such as execution time or memory consumption, in terms of the size of an input. Expert programmers are familiar with a variety of well-established algorithms and their respective complexities and use this knowledge to choose algorithms that are best suited to the circumstances.

Thursday, January 29, 2009

Modern Programming

Quality requirements
Whatever the approach to software development may be, the final program must satisfy some fundamental properties. The following five properties are among the most relevant:
Efficiency/Performance: the amount of system resources a program consumes (processor time, memory space, slow devices, network bandwidth and to some extent even user interaction), the less the better.
Reliability: how often the results of a program are correct. This depends on prevention of error propagation resulting from data conversion and prevention of errors resulting from buffer overflows, underflows and zero division.
Robustness: how well a program anticipates situations of data type conflict and other incompatibilities that result in run time errors and program halts. The focus is mainly on user interaction and the handling of exceptions.
Usability: the clarity and intuitiveness of a programs output can make or break its success. This involves a wide range of textual and graphical elements that makes a program easy and comfortable to use.
Portability: the range of computer hardware and operating system platforms on which the source code of a program can be compiled/interpreted and run. This depends mainly on the range of platform specific compilers for the language of the source code rather than anything having to do with the program directly.

History of Programming

The concept of devices that operate following a pre-defined set of instructions traces back to Greek Mythology, notably Hephaestus and his mechanical servants. The Antikyther
mechanism was a calculator utilizing gears of various sizes and configuration to determine its operation. The earliest known programmable machines (machines whose behavior can be controlled and predicted with a set of instructions) were Al-Jazari's programmable Automata in 1206. One of Al-Jazari's robots was originally a boat with four automatic musicians that floated on a lake to entertain guests at royal drinking parties. Programming this mechanism's behavior meant placing pegs and cams into a wooden drum at specific locations. These would then bump into little levers that operate a percussion instrument. The output of this device was a small drummer playing various rhythms and drum patterns. Another sophisticated programmable machine by Al-Jazari was the castle clock, notable for its concept of variables which the operator could manipulate as necessary (i.e. the length of day and night). The Jacquard Loom, which Joseph Marie Jacquard developed in 1801, uses a series of pasteboard cards with holes punched in them. The hole pattern represented the pattern that the loom had to follow in weaving cloth. The loom could produce entirely different weaves using different sets of cards. Charles Babbage adopted the use of punched cards around 1830 to control his Analytical Engine. The synthesis of numerical calculation, predetermined operation and output, along with a way to organize and input instructions in a manner relatively easy for humans to conceive and produce, led to the modern development of computer programming.
Development of computer programming accelerated through the Industrial Revolution. The punch card innovation was later refined by Herman Hollerith who, in 1896 founded the Tabulating Machine Company (which later became IBM). He invented the Hollerith punched card, the card reader, and the key punch machine. These inventions were the foundation of the modern information processing industry. The addition of a plug-board to his 1906 Type I Tabulator allowed it to do different jobs without having to be physically rebuilt. By the late 1940s there were a variety of plug-board programmable machines, called unit record equipment, to perform data processing tasks (card reading). Early computer programmers used plug-boards for the variety of complex calculations requested of the newly invented machines.

Data and instructions could be stored on external punch cards, which were kept in order and arranged in program decks.
The invention of the Von Neumann architecture allowed computer programs to be stored in computer memory. Early programs had to be painstakingly crafted using the instructions of the particular machine, often in binary notation. Every model of computer would be likely to need different instructions to do the same task. Later assembly languages were developed that let the programmer specify each instruction in a text format, entering abbreviations for each operation code instead of a number and specifying addresses in symbolic form (e.g. ADD X, TOTAL). In 1954 Fortran, the first higher level programming language, was invented. This allowed programmers to specify calculations by entering a formula directly (e.g. Y = X*2 + 5*X + 9). The program text, or source, was converted into machine instructions using a special program called a compiler. Many other languages were developed, including ones for commercial programming, such as COBOL. Programs were mostly still entered using punch cards or paper tape. (See computer programming in the punch card era). By the late 1960s, data storage devices and computer terminals became inexpensive enough so programs could be created by typing directly into the computers. Text editors were developed that allowed changes and corrections to be made much more easily than with punch cards.
As time has progressed, computers have made giant leaps in the area of processing power. This has brought about newer programming languages that are more abstracted from the underlying hardware. Although these more abstracted languages require additional overhead, in most cases the huge increase in speed of modern computers has brought about little performance decrease compared to earlier counterparts. The benefits of these more abstracted languages is that they allow both an easier learning curve for people less familiar with the older lower-level programming languages, and they also allow a more experienced programmer to develop simple applications quickly. Despite these benefits, large complicated programs, and programs that are more dependent on speed still require the faster and relatively lower-level languages with today's hardware. (The same concerns were raised about the original Fortran language.)
Throughout the second half of the twentieth century, programming was an attractive career in most developed countries. Some forms of programming have been increasingly subject to offshore outsourcing (importing software and services from other countries, usually at a lower wage), making programming career decisions in developed countries more complicated, while increasing economic opportunities in less developed areas. It is unclear how far this trend will continue and how deeply it will impact programmer wages and opportunities

Overview

Within software engineering, programming (the implementation) is regarded as one phase in a software development process.
There is an ongoing debate on the extent to which the writing of programs is an art, a craft or an engineering discipline. Good programming is generally considered to be the measured application of all three, with the goal of producing an efficient and evolvable software solution (the criteria for "efficient" and "evolvable" vary considerably). The discipline differs from many other technical professions in that programmers generally do not need to be licensed or pass any standardized (or governmentally regulated) certification tests in order to call themselves "programmers" or even "software engineers." However, representing oneself as a "Professional Software Engineer" without a license from an accredited institution is illegal in many parts of the world.
Another ongoing debate is the extent to which the programming language used in writing computer programs affects the form that the final program takes. This debate is analogous to that surrounding the Sapir-Whorf hypothesis in linguistics, that postulates that a particular language's nature influences the habitual thought of its speakers. Different language patterns yield different patterns of thought. This idea challenges the possibility of representing the world perfectly with language, because it acknowledges that the mechanisms of any language condition the thoughts of its speaker community.
Said another way, programming is the craft of transforming requirements into something that a computer can execute

computer programming

Computer programming (often shortened to programming or coding) is the process of writing, testing, debugging/troubleshooting, and maintaining the source code of computer programs. This source code is written in a programming language. The code may be a modification of an existing source or something completely new. The purpose of programming is to create a program that exhibits a certain desired behavior (customization). The process of writing source code often requires expertise in many different subjects, including knowledge of the application domain, specialized algorithms and formal logic.

Contents:--
1 Overview
2 History of programming
3 Modern programming
3.1 Quality requirements
3.2 Algorithmic complexity
3.3 Methodologies
3.4 Measuring language usage
3.5 Debugging
4 Programming languages
5 Programmers
6 References
7 See also
8 External links

Hi

Hi Friends
Its all about computers and laptop and about It.

Computer is an electronic device as you know
Laptop is a another form of computer.
It includes both.

Thanks